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ABSTRACT

Monte Carlo techniques for image synthesis are simple and
powerful, but they are prone to noise from inadequate sam-

pling. This paper describes a class of non-linear filters that -

remove sampling noise in synthetic images without remov-
ing salient features. This is achieved by spreading real input
sample values into the output image via variable-width fil-
ter kernels, rather than gathering samples into each output
pixel via a constant-width kernel. The technique is non-
linear because kernel widths are based on sample magni-
tudes, and this local redistribution of values cannot gener-
ally be mapped to a linear function. Nevertheless, the tech-
nique preserves energy because the kernels are normalized,
and all input samples have the same average influence on the
output. To demonstrate its eflectiveness, the new filtering
method is applied to two rendering techniques. The first is
a Monte Carlo path tracing technique with the conflicting
goals of keeping pixel variance below a specified limit and
finishing in a finite amount of time; this application shows
how the filter may be used to “clean up” areas where it is
not practical to sample adequately. The second is a hybrid
deterministic and Monte Carlo ray-tracing program; this ap-
plication shows how the filter can be effective even when the
pixel variance is not known.

CR Categories and Descriptors: 1.3.3 [Computer
Graphiecs]: Picture/image generation - Display algorithms;
[.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism - shading

General Terms: Algorithms

Additional Key Words and Phrases: Monte Carlo,
Lighting Simulation, Noise Reduction.

1 Introduction

Over the past decade two approaches for computing global
illumination for realistic images have emerged - Monte Carlo
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path tracing and finite element (radiosity) methods. An ad-
vantage of the Monte Carlo approach is that the computa-
tional work is concentrated in the visible image at image
resolution - not distributed throughout the environment.
A disadvantage is that Monte Carlo images generated in a
fixed length of time appear noisy. In this paper we examine
the origins of this noise and develop the idea of energy pre-
serving non-linear filters to reduce noise in post-processing.
The filters are energy preserving in that they spread “noisy”
samples into small regions rather than throwing them out.
‘The filters are non-linear because the local distribution of
samples is based on their magnitudes, hence output pixels
will not be tied to a uniformly weighted sum of the input
values. (Although such a relation may hold over large por-
tions of the image.) The formulation of the filters is unique
in that they are constructed by specifying the infiuence of
each input sample, rather than by specifying the support
region for each output pixel.

We begin with a discussion of digital filter applications
in computer graphics, and the need for a new filter for syn-
thetic images. We then discuss the source of noise in Monte
Carlo images by examining features of this solution to the
rendering equation. We develop the overall design of an en-
ergy preserving non-linear filter and show implementations
of these filters for two different rendering systems. Examples
are presented to demonstrate how energy preserving non-
linear filters can effectively improve image guality without
requiring additional sampling.

2 Filters

Generating a synthetic image is a sampling problem. The
extensive literature in signal processing provides many use-
ful algorithms and insights for image generation. Principles
from signal processing for sampling and reconstructing im-
ages have been explored by many researchers (e.g. [6],[9])-
Because samples are computationally expensive for global
illumination calculations, efficient techniques must be em-
ployed in selecting the original samples. However, as noted
by Mitchell [10] the problem of sampling global illumination
is more complicated than 2-D image sampling because it in-
volves predicting noise in 2-D space resulting from sampling
a higher dimensional space. As we will discuss in more detail
in the following section, even with sophisticated sampling
techniques, excessive supersampling is required to eliminate
noise under many common circumstances.

Lee and Redner [8] have studied the problem of noise in
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stochastically sampled synthetic images. They note that the
linear filters typically used in computer graphics are unsatis-
factory for eliminating the spike noise encountered in images
generated using stochastic sampling. Linear filters tend to
blur image details that should be kept sharp, while failing to
spread the spike noise adequately. To resolve this problem,
Lee and Redner proposed using alpha trimmed filters. Alpha
trimmed filters have proved successful for eliminating spike
noise and preserving edges in image processing applications.
Such filters throw out “outlier” sample values when comput-
ing filtered pixel values. Lee and Redner demonstrate that
alpha trimmed filters produce synthetic images without no-
ticeable noise artifacts. However, they do not address the
effect of such filters on the accuracy of the resulting image,
and some important features may be lost.

Alpha trimmed and similar non-linear filters (e.g. mor-
phological filters [5]) produce good results for many types of
physically recorded images. In physically recorded images,
the noise in the image is frequently due to secondary inputs
that corrupt the signal of interest. Examples of unwanted
secondary inputs are thermal noise in a detector element,
and bit errors introduced in image transmission. Throwing
out samples from these extraneous sources is desirable. In
synthetic images, there are no corrupting secondary inputs.
All of the samples carry valid information about the signal,
and their effect should be included in the final image.

Another difference between synthetic and recorded im-
ages is the confidence we have in the results for some pixels.
In recorded images there is frequently a great deal of un-
certainty throughout the image. The exact pixel values are
often unimportant, since many applications only need to
identify objects, rather than examine subtle lighting effects.
For synthetic images we have a high level of confidence in the
values of some pixels. A great deal of computational effort
has been expended to obtain subtle effects. We don’t want
the values of these pixels-altered by a post-process filter.

In effect, we want our rendering process to simulate a
sort of “idealized camera™ up to and possibly including the
storage of our final image. In displaying the image, we may
attempt to compensate for human visual response with a
tone-mapping operator (as discussed in the following sec-
tion), but if we do not have a valid physical result, we have
nothing to offer as input to such an operator.

The differences between synthetic and recorded images
introduce two constraints for a filter for synthetic images
that are not usually imposed on filters for physical images —
energy preservation and minimal disruption. Energy preser-
vation comes from the consideration that we do not want
to throw any samples out. If a sample is contributing to
a noisy region, we want to reduce noise by spreading out
the energy it carries ~ not by removing it from the image.
Minimal disruption comes from the consideration that we
do not want to alter pixels that we have a high level of con-
fidence in. To the greatest extent possible, the radiance of
these pixels should be the same in the filtered image as in
the unfiltered image.

3 The Complete Rendering Equation

The generation of a synthetic image was originally charac-
terized as the solution of a rendering equation by Kajiya [7].
A complete rendering equation gives the values to be set
on an image display device as a function of the radiometric
properties of the synthetic scene and the display device. For
convenience in examining the source of image noise we will
examine the rendering equation in three parts:
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L(x,y.0,¢) = L.(z,y,6,¢)
+/fr(z,'y,9.‘,¢.‘,9,¢)L;(r,y,9i,¢;)cosggdwg (1)

Ly = / L(z,y,6,¢)g9(z,y)dzdy (2)
trmage_plane

Np=T(Lp) (3)

Equation 1 is the equation of transport for visible light in
the synthetic scene. Equation 1 gives the radiance L(z,y, 4, ¢)
at visible surface point (r,y) in the direction (6, ¢) that
would reach the observer of a physical realization of the
scene. Le(z,y,8,¢) is the emitted radiance of the point
(non-zero only for light sources) and f;(z,vy,6:,¢:,6,0) is
the bidirectional reflection distribution function (BRDF) for
the point. The integral on the right hand side accounts for
all reflection of incident radiance L;(z,y,8:, ¢;) from solid
angles dw;. Radiance has dimensions of energy per unit
time, area and solid angle.

Equation 2 expresses the radiance L, of a discrete pixel
from the function L(z,y,8,¢). The function g(z,y) is the
2-D filter used to eliminate spatial aliasing errors. The func-
tion g(z,y) has dimensions of 1/area and is normalized so
that L, has the same units and range as L(z,y,8, ¢).

Equation 3 expresses the conversion of pixel radiance,
which can take on any physically realizable value (i.e. from
starlit to sunlit scenes), and converts it to a dimensionless
setting for the display device N, - usually to an integer
between 0 and 255. The function T() is the tone operator,
which is constructed using properties of human perception
and characteristics of the display device. Various forms for
T() are discussed in [4], [12], and [13]. Even simple tone
operators are inherently non-linear because of quantization
effects and clipping of out of range values.

Typical Monte Carlo renderers compute an estimate ip
by forming and averaging many sample values L. As stated
by Purgathofer [11], the number of samples M, is determined
by the number required to reduce the estimated deviation
Sp of the average to less than a specified tolerance d with
a specified confidence « using the percentage point of the ¢
distribution #;_go a7, 1. That is:

My
Ly=>"Lyo/M (4)
g=1
Ay
1 -
- I — 2
% =\ MO0 = 1) ‘;(LM - Lp) %)
q=
Sp <dfti_g a1 (6)

The calculation of each value L, begins by selecting a
random value of (z, y) in the right hand side of Eq. 2. At this
location Eq. 1 is estimated by choosing a random direction
for evaluating the integral on the right hand side. Since
the value of Li(r,y,8:,¢:) is unknown, and also governed
by Eq. 1, this estimation is done recursively, and a path of
rays is generated [7]. After values of L, are computed the
tone operator in Eq. 3 is applied to display the image.

Using this naive approach, there is often high variance in
the estimate of the integral on the right hand side of Eq. 1.
This is because the integrand sample values can vary from
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the light source radiance to the radiance of dark, shaded
objects in the room — with a dynamic range of 10° being
common [4]. To make Monte Carlo solutions practical, the
integral on the right hand side is rewritten as a sum of in-
tegrals [3).

/fr(r,y. B:,¢i,8,0)Li(z,y,8i, ¢i)costidw; =
/fr,d(z1y19i,¢i.0,¢)l'is(s)L¢(Ig,'.l/_e)COSH.‘COSH,.dAs/T_E
+/fr.d(171yigia¢i,9'¢)Li.not_s(I.,‘y,9,,([).‘)C039((1w,
+/ Fros(, 9,85, 60,8, 8) Li(x, v, 0i, di)cosbidw; (T)
spec_lobe

In Eq. 7, fr.a is the diffuse-like component of the BRDF,
and f» is the specular-like. The integral for the diffuse-like
component is divided into parts. The first is the integral for
direct illumination. The direct illumination is an integral
over all light sources s in terms of the area of the sources
As, visibility of the source vis(s), emission from the source
surface L.(z.,y:), angle from the source #. and distance
to the source, r.. The second is an integral for indirect
illumination, i.e. over all incident light that does not come
directly from the light source. The final integral on the right
of Eq. 7 gives the specularly reflected light. Each of the
integrals on the right of Eq. 7 generally has a lower variance
than the integral on the left of Eq. 1, so the number of trials
required is greatly reduced [1].

4 Designing a Filter for Synthetic Image
Noise

One way to eliminating noise in Monte Carlo images is to
increase sampling rates until the estimated error is less than
the display device brighiness resolution. However, in this
section we show that in a typical image there will be regions
in which the number of samples required to achieve this goal
is impractical.

4.1 The Origin of Noisy Regions

A “worst case” estimate of the minimum number of trials
M; required for applying the test in Eq. 6 is given by Pur-
gathofer [11]. Scaling the values so that samples range from
0 to 1, the number of trials required is:

log(1 — o)

log(1 —d) (8)

M >

For an image anti-aliasing problem with samples that
ranged in value from 0 to 255, Purgathofer found that useful
results were obtained when an interval of D = 13 {i.e. d
= 13/255=.05 in Eq. 8) was allowed with a confidence of
80%. These values of d and a give 2 minimum sampling of
32 trials/pixel.

The sampling rates required when computing radiance in
“real world” floating point values and subsequently mapping
to the device with a tone operator are much higher. While
the form of tone operators varies, a typical radiance value on
the order of 1073 times the light source radiance is mapped
in Eq. 3 to a value N, on the order of 100. An interval
on the order of £10 in the final display then requires an

interval d equal to 10™% times the light source radiance.
Scaling the problem so that the light source radiance is 1, a
value of d = 10™* with a confidence of 80 % in Eq. 8 gives
a minimum sampling rate of 16,094 trials per pixel!

The reorganization of the equation of transport given in
Eq. 7 reduces the variance so that for most pixels in an
image this worst case does not occur. However, there will
be small regions in the image in which the “worst case” is
encountered. These isolated regions will be noisy because
they are undersampled. We summarize these high variance
cases in Fig. 1.

Figure 1(a) illustrates the first type of high variance in-
tegration. Both light sources and non-light sources can be
visible through some pixels. Sampling Eq. 2 for these pixels
is essentially sampling a binomial distribution with several
orders of magnitude in the two alternatives. Convergence is
extremely slow in such cases.

Figure 1({b) illustrates a second high variance case — the
integration of direct illumination for a diffuse-like surface
(first integral on the right of Eq. 7). For a point which has
a full view of the light source, a small number of trials are
needed to estimate the cosine and distance terms in the in-
tegral. However, when the view of a light source is partially
obscured a large number of trials may be required to esti-
mate the visible area. The smaller the fraction of the source
that is visible, the larger the number of trials needed. Since
a light source has a high radiance, just one “hit” will result
in a large sample standard deviation.

Figure 1(c) illustrates the integration of reflected light
for a specular-like surface, the third integral on the right of
Eq. 7. The BRDF is concentrated on a small lobe near the
specular direction. A high variance in samples for this case
occurs when a small portion of this lobe is subtended by a
light source.

The fourth type of integration with high deviations is the
case of “caustic paths”, shown in Fig. 1(d). The integral di-
agrammed in Figure 1(d) is the second term on the right of
Eq. 7. A “caustic” appears when a small portion of the inci-
dent hemisphere is subtended by the image of a light source
in a specular-like reflection. When a sample ray hits this
small image, a large deviation in the sample is introduced.

In any of the four cases, high deviations are expected in
some region of the scene, not at one point. Light source
edges, penumbrae, fuzzy specular reflections and caustics
spread through regions. For @ pixels in one of these re-
gions, only a small number of pixels ¢ will have obtained
samples hitting the high radiance portion of the domain of
integration. The g pixels will appear to be adding noise to
the region of Q — g pixels that appearto be accurate. Actu-
ally, all Q pixels are equally valid. Rather than throwing out
the ¢ “noise” pixels, the true value that should have been
calculated for the whole region should be an average of all
Q values.

4.2 Filter Design

Our goal then is to design a filter that will spread the influ-
ence of ¢ “noise” pixels into a larger region of Q pixels. We
want to spread these pixels out without changing the total
energy in the image, and without changing any pixel values
unnecessarily.

First, to meet the goal of preserving energy, the filter
must be applied to floating point sample values before the
application of the tone operator. For example, take a simple
tone operator that scales values by (128/.001), and clips
values over 255. Consider a box filter in 1-D on the three
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Figure 1: High pirel variances result when: (a) a light source is partially visible through a pirel the variance in samples, (b}

a diffuse-like surface views only a small fraction of a light source, (c)

when a light source subtends a small portion of the

specular lobe of a specular surface, or (d) the image of a light source is visible to a diffuse-like surface via specular reflections

values .0001, .001, and 1. If used before the tone operator,
the filter gives 0.3337 and the pixel is clipped to a value of
255. If the tone operator is used first, the values become 13,
128 and 255, and the filter erroneously produces a result of
132,

Because we also want minimal disruption of pixels which
are not in noisy areas, we want to design a filler that spreads
the influence of “noise” pixels only. Because we are working
from the point of view of constructing rather than analyzing
an image, we construct our filter from a different point of
view than usual.

Figure 2 diagrams typical digital filters. A support region
is defined for each output pixel. This region may be uniform,
as shown in (a). This has the energy preserving property
we seek, but has the disadvantages of blurring detail and
not adequately distributing some values. A variable width
region may be used to change the influence of some input
samples [6]. However, as shown in the example in (b), this
type of variable width kernel does not preserve all of the
energy in the original sample set.

We propose constructing energy preserving filters based
on the region of influence of each input sample, rather than
defining a support region for each output sample. This is di-
agrammed in Fig. 3. A region is defined for each input sam-
ple. The weights assigned to the sample as it is distributed
to the output image sum to one, and energy is preserved.
By varying the region of influence for each input sample,
large areas of the image can remain unaffected by the filter
and the input image is disrupted a minimal amount.

The design of any input based energy preserving filter
requires two rules: 1) a rule to identify “noise” inputs, and
2) a rule to determine the region into which the “noise”
inputs will be distributed.

5 Example Applications

There are many ways that Monte Carlo solutions to the
rendering equation can be constructed. Energy preserving
filters can be used to reduce noise in any of these methods.
We present the application of energy preserving filters to
two different rendering methods.

5.1 Monte Carlo Path Tracing with a Ra-
diosity Preprocess

The first example we consider is a Monte Carlo path tracing
{MCPT) method with a radiosity preprocess to reduce vari-

ance. In this method the estimates L, are made as described
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Figure 2: (a) A constant width fiter based on defining

the support region for each pizel. The weights assigned to
the samples in the support region sum to one, i.e. P, =
25Pa1 + 5P, + .25Pn41. Energy is preserved since the
weight assigned to each input pizel sums to unity for the im-
age as a whole. (b) A variable width filter based on defining
the support region for each pirel. The weights assigned to
the samples in the support region sum to one. The energy
in the input image is not preserved, however. For erample,
Py, is weighted by .25 for P,_,, by .375 for P and by .25
Pri1, so that 12.5% of the energy from P, is lost.
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for Py

region of influence for Pm

Figure 3: A variable width filter based on defining the region
of influence for each input sample. The sum of weights as-
signed to a sample as it is distributed to the output image is
sel to one to guaraniee energy preservation. For erample,
P, is weighted by .25 in computing Py,_,, .5 for P, and .25
for Plyy. Pmis weighted by .0625 for Ph_z, .25 for Pr_y,
.375 for P, .25 for P, and .0625 for Pyo.

in Section 3, except that in estimating the incident radiance
for diffuse-like surfaces in the indirect illumination integral,
values from a radiosity preprocess are used. This is essen-
tially the progressive multi-pass method described by Chen
et al. [3], except that the “light ray” pass for explicit cal-
culation of caustics is replaced by allowing caustic paths to
be followed in the integration of indirect illumination. The
“light ray” pass can be extremely costly when many light
source/specular surface combinations need to be examined.
By using an energy preserving filter, the noise that has been
the drawback of including caustic paths in the Monte Carlo
integration will be reduced.

For this method, “noise” pixels will be identified as pixels
which have not converged to within a user specified interval
+D. To be sure that most pixels have converged, we need a
minimum value of A, that will be valid for the majority of
pixels. To predict M., we need to know typical values of S,
(defined in Eq. 5). We also need to estimate the floating
point value visibility threshold L;yi. which will translate into
a difference of one unit in Np. The threshold depends on the
form of T() in Eq. 3.

To predict Sp and Liyic we take a small pilot sample (e.g.
similar to the pilot sample suggested in [2]) by rendering a
100x100 pixel image with 16 trials per pixel. Since the devi-
ation in our estimates decreases with the square root of the
number of trials, the estimate of Sp_as, for M samples will
be the average sample deviation 5,,_16 we calculate for the

pilot sample times \/16/M;. For the purposes of estimating
Livie, we assume a simple linear tone operator in which the
average image value Ly will be mapped to the middle of
the display range, Narrp. That is:

Litvie = Lalre/A)Vl\!]D (9)

Knowing L. and an estimate of Sp, the number of trials
required to obtain a result accurate to £D is approximately:

45,7_15
Dleis

We construct our method to require a2 minimum of sam-
ples M, as given by Eq. 10. (Note, because t;_g as—; is
near 1.0 for o = 80% and M. > 16 it does not ;;.ppear in
the estimate in Eq. 10.) Since the value of M using this

M= )? (10)

technique is a typical, rather than maximum valre, we mul-
tiply this number by heuristically determined value of 4 to
establish M} ceiting to insure that the majority of pixels will
converge.

The simple linear tone operator is only assumed for the
purpose of estimating the number of samples. The image
will still be computed in floating point, and any tone oper-
ator can be applied to the result.

For the method just described, a pixel is considered a
“noise” pixel to be treated by the filter if its sample variation
is larger than the acceptable tolerance after Me ceiting trials.
The excess value at each unconverged pixel is defined as
the difference between the pixel radiance and the average of
its immediate neighbors. If the excess energy exceeds this
average by more than the variation allowed in the original
calculations (i.e. D Liyie), it is spread into a region around
the unconverged pixel.

Energy could be preserved by simply spreading the ex-
cess energy over the entire image. However, that would un-
necessarily disrupt some pixels, and all definition of features
such as caustics would be lost. To determine the size of
a smaller region into which the energy should be spread,
we use the criterion that we do not want to introduce non-
physical high frequency artifacts into the image. The energy
is spread so that the additional radiance at each pixel will
be no more than Liuie.

Any shape filter could be used. For a simple box shaped
filter, the calculation is straight{forward. The difference be-
tween the radiance of the unconverged pixel L. and the
average of its converged neighbors L, is found. The amount
that L, — L, exceeds the allowable error level DL;uis is
the excess value Lezcess Which needs to be distributed. To
limit the effect on neighboring pixels, the number of pixels
to which the excess is distributed is ceiling(Lezcess/ Ltvis).

Only converged pixels in the original solution are used to
compute the average. The effect of the filter does not depend
on the order in which pixels are traversed. In some instances
an unconverged pixel will have no converged neighbors. In
this case the filter is applied recursively, with pixels that
have had excess energy spread out marked as converged in
the next iteration.

The method just described doesn’t account for the spec-
tral variation of radiance. If the method were applied for
each spectral sample individually, wavelengths for which a
pixel had a high variance would be smoothed out, while
values at other wavelengths would be left untouched. The
result would be “noisy” areas tending to turn gray. To avoid
this color shift, the luminance of each “noisy” pixel is com-
pared to the average luminance of its neighbors, and excess
luminance is distributed with the same spectral distribution
as the original “noisy” pixel.

Figure 4 shows the results of applying the simple box fil-
ter to an image generated using MCPT with radiosity pre-
process. Two small specular boxes, one blue and one red
are located in a yellow-brown room. (The specular boxes do
not appear shiny because they reflect the featureless walls
of the room). An image rendered using Eq. 10 to determine
M, with D = 5 for a 0 to 255 display device is shown on
the left. There are noisy regions in the image due to caustic
paths in the indirect illumination calculation as diagrammed
in Fig. 1(d). A noisy caustic due to the blue box can be seen
on the ceiling near the light. More subtle noisy caustics due
to the red box can be seen on the floor near the red box
and on the ceiling above the red box. There is also a large
penumbra region (as diagrammed in Fig. 1{2}} on the left
wall due to the blue box.

The image after applying the filter is shown in the center.
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Figure 4: Application of encrgy preserving filter 1o images using Monte Carlo path tracing with radiosity

preprocess. Lett: Unfitered imag

image, 1 500-0000 samples.
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w 00-240 samples. Center: Lell image after filtering. Right: Unfiliered

Figure 5: Low resolution
images of a light source
eencraled using Radiance.
Pixels are enlarged o
cmphasize differences.

Lelt: Uniform Gaussian Diter.,
Right: Non—fincar filtcr.

Figure 0: Images generaled
using Radiance showing
noise in specular reflection,
Felt: Uniform Gaussian {ilter.
Right: Non—tincar lilter.
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A comparison of the unfiltered and filtered images shows
that the filter correctly left features outside of the high noise
areas undisrupted. Only a small number of pixels in the
penumbra region are changed. The large caustic feature
due to the blue box is retained and smoothed out, as are
the smaller fainter red caustics.

The image in the lower right is the same scene rendered
using a minimum sampling rate that is 25 times higher (i.e.
M, set for D = 1.) Not surprisingly, the filtered image
appears somewhat noisier than the high sampling rate image
which took 25 times longer to compute. This is because
the filter is designed to affect the unconverged “high noise”
pixels only, not to remove the %5 units of variation allowed
in the original low sampling rate calculation. However, a
comparison of the filtered and high sampling rate images
does show that the caustic features preserved by the filter
are real.

5.2 RADIANCE

Radiance is a rendering system developed over many years
at the Lawrence Berkeley Laboratory. It incorporates most
kinds of light transport in a physically-based simulation
of architectural (and other) environments, using a hybrid
Monte Carlo and deterministic ray tracing approach that
has been optimized to provide accurate results quickly in
most cases [14]. In general, Radiance produces high qual-
ity results in much less time than the MCPT method just
described.

“Noise” pixels are less common in Radiance, but they
may still occur because of the Monte Carlo components of
the calculation. However, because of the deterministic com-
ponents of the calculation, an explicit measure of S is not
available for each input sample. Alternative rules for identi-
fying “noise” pixels and their region of influence are needed.

In Radiance, an initial floating-point picture is generated
at the super-sample resolution (typically 3x3 times the final
image resolution). Anti-aliasing and other filtering opera-
tions are carried out by a separate program. Since we do
not have an estimate of the variance of each sample, we de-
fine “noisy” samples as pixel super-sample values that are
very large (or very small) compared to their neighbors. We
increase the radius of influence for these samples. The cri-
terion for how much to spread a sample is simply stated:

Any given super-sample is spread out sufficiently
that its influence on any given output pixel is
smaller than a specified tolerance.

A ‘“noisy” super-sample is identified as having a greater
influence on an output pixel than we can tolerate with the
current filter kernel. The amount a given sample affects a
weighted average of samples is derived very easily from the
formula for weighted averages:

Z. Wy r,

F = S (11)
Zl w
The average without sample ry is simply:
I wy) — werg
Fr_ = (_z:'_...'..).__"_ (12)

Z.wc w

Taking the absolute difference between ¥ and fx- and
dividing by Fr—. we arrive at the absolute relative difference
due to a super-sample’s influence:

15 -1
Dayp = — 21 (13)
Z.“" _ 3k
urg T
T, Tk >0

Our goal is to find a kernel width that produces a Da,
less than or equal to the selected tolerance. In the context
of a filter kernel whose weights sum to one, this translates
to the following formula:

S 131
tolerance > T = (14)
ug I

where:

1o is the super-sample value

wp is the super-sample weight at the central peak of the
filter kernel

% is the kernel-weighted average centered on this super-
sample

If the effect of a sample is above our tolerance level us-
ing the default kernel radius, the radius is expanded until
the sample’s effect is below tolerance. The tolerance given
depends on the expected pixel variance, which is in turn re-
lated to the number of super-samples used for each pixel.
From experience using a Gaussian kernel, a good tolerance
value for 3x3 oversampling is 0.25, and a good tolerance for
4x4 oversampling is 0.15. These tolerance values are typ-
ically higher than the L. value used for the previously
described box filter because the influence of a Gaussian ker-
nel always peaks near the closest output pixel, and drops off
rapidly with distance.

The search for a kernel width to satisfy Relation 14 with-
out going too far overboard could be expensive, so we have
made a few optimizations. First, we work with pixel lumi-
nance values rather than colors, which reduces the number
of operations and avoids the color shifting mentioned in the
previous section. Second, we compute ring sums about the
closest output pixel and use 1-dimensional vector multipli-
cation to compute the different Gaussian-weighted averages,
greatly simplifying the calculation of Z. Finally, we use nu-
merical iteration to zero in on the appropriate kernel width
more quickly. Treating 14 as an equation, we guess the next
kernel width based on the D,, computed for the current
width. In most cases, this produces faster convergence than
a simple binary search, but care must be taken to avoid in-
finite iteration on anomalous pixels. In our implementation
of this filter, we have found it to take about three times as
long as a standard Gaussian kernel, which is still insignifi-
cant compared with the overall rendering times.

Examples of applying a filter of this form are shown in
Figs. 5 and 6. The examples demonstrate two types of
high variance areas that can be encountered in Radiance
renderings.

As discussed in Section 4.1, light source boundaries (dia-
grammed in Fig. 1{a)) may cause aliasing in the final image
even when many samples are taken at a pixel, because just
one sample landing on or off the light source makes a de-
tectable contrast difference in the final result. As menticned
in Section 4.2 the usual solution of clamping before filter-
ing produces incorrect results. It also destroys the physical
units of the result. By applying an energy preserving non-
linear filter before mapping to the display device, extreme
contrast boundaries are spread out and aliasing is reduced.
The effect is a slight fuzziness to light source boundaries in

137



SIGGRAPH 94, Orlando,Florida, July 24-29, 1994

proportion to their brightness, something that in appear-
ance is quite natural because the eye loses acuity in these
regions, anyway.

The image on the left of Fig. 5 shows a low-resolution
closeup of a pendant fixture, filtered with a linear Gaussian
kernel and 9 samples/pixel. Notice the jagged edges caused
by inadequate sampling. The image on the right shows the
same computation with an energy preserving non-linear fil-
ter applied during anti-aliasing. The source boundaries are
now softer and smoother, as they would appear in real life.
The results have not been changed, only dispersed slightly
around the source edges. This is important for later analy-
ses, which might need the absolute radiance values to eval-
uate glare or other visual quality metrics.

To avoid unpredictably long rendering times, Radiance
uses a minimal number of shadow rays to light sources plus
one specular ray per pixel super-sample per surface interac-
tion, similar to Monte Carlo path tracing. The user chooses
an initial sampling density that produces adequate conver-
gence over most of the image, but in areas where the num-
ber of samples chosen is not enough, there will be noise.
The most frequent source of objectionable sampling noise
is rough specular reflection of light sources (diagrammed in
Fig. 1{(c).) The left image in Fig. 6 shows a rendering of
a candle holder with a rough specular surface on a table
using 16 samples per pixel and a linear Gaussian filter. In
this case, a linear Gaussian filter compounds the sampling
artifacts by spreading them out to neighboring pixels with-
out sufficiently reducing their contribution. So, little bright
spots become big bright spots. The right image demon-
strates how a non-linear filter reduces image noise without
compromising the results. The specular highlights that were
present in the calculation are still present in the filtered im-
age — only more evenly distributed. This can be compared
with alpha trimmed filters that reduce noise simply by re-
moving the offending samples, taking the very real highlight
with them. The energy preserving quality of our filter en-
sures that we do not lose the information we have worked
so hard to compute.

6 Conclusions

We have introduced a new class of non-linear filters that re-
duces sampling noise while preserving energy and important
image features. In two example applications we have shown
that such a filter may be used to clean up unconverged sec-
tions of a Monte Carlo image, or reduce artifacts in a hybrid
deterministic and stochastic ray tracing system.

The new filtering technique has particular significance for
physically-based rendering, where image accuracy is a key
goal. Its energy preserving nature means none of the calcu-
lations are thrown away, and the filter’s non-linear response
is critical in a floating-point domain where sample values
may differ by several orders of magnitude. Also, the char-
acteristic of minimal disruption guarantees that converged
pixels will not be adversely affected.

The key underlying theme in this paper is choosing be-
tween what is correct and what is acceptable in a physically-
based rendering. The eye’s relative sensitivity to high fre-
quency noise tends to undermine the application of Monte
Carlo techniques, since reducing variance in some parts of
an image can be extremely expensive. Instead. we can rec-
ognize these areas as being inadequately sampled, and use
a variable-width kernel to reconstruct them in a way that
maintains overall accuracy without offending the eve. Our
goal is to be as correct as possible and still be acceptable to
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the viewer. Since acceptability is such a subjective measure,
it is difficult to say when and whether an optimal kernel has
been found, but the general approach of scaling kernel width
to target a specific variance seems to work quite well.

It is our hope that this new class of filters will help
broaden the practical applications of Monte Carlo techniques
in rendering by removing one of its principal drawbacks: im-
age noise.
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